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ABSTRACT: Extracellular vesicles (EVs) are a means of cell-to-cell communication and can facilitate the exchange of a broad 
array of molecules between adjacent or distant cells. Platelets are anucleate cells derived from megakaryocytes and are 
primarily known for their role in maintaining hemostasis and vascular integrity. Upon activation by a variety of agonists, 
platelets readily generate EVs, which were initially identified as procoagulant particles. However, as both platelets and their 
EVs are abundant in blood, the role of platelet EVs in hemostasis may be redundant. Moreover, findings have challenged the 
significance of platelet-derived EVs in coagulation. Looking beyond hemostasis, platelet EV cargo is incredibly diverse and 
can include lipids, proteins, nucleic acids, and organelles involved in numerous other biological processes. Furthermore, while 
platelets cannot cross tissue barriers, their EVs can enter lymph, bone marrow, and synovial fluid. This allows for the transfer 
of platelet-derived content to cellular recipients and organs inaccessible to platelets. This review highlights the importance 
of platelet-derived EVs in physiological and pathological conditions beyond hemostasis.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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Platelets were first described in the 1880s, and it was 
quickly understood that their main function was the 
prevention of bleeding. Following damage to blood 

vessels, platelets rapidly seal the breach to prevent blood 
loss. However, pathogens (bacteria, viruses, and fungi) 
can take advantage of the loss of vascular integrity to 
invade the blood stream and disseminate. It is now recog-
nized that platelets express numerous inflammatory mol-
ecules and receptors capable of recruiting immune cells 
and limiting the risk of infection. Thus, although platelets 
are poised to play roles in immunity and inflammation, 
their primary functions remain restricted to the blood cir-
culation due to their limited migratory capabilities.

Extracellular vesicles (EVs) are membrane ves-
icles released from the cellular plasma membrane 

(microvesicles or microparticles) or endosomal com-
partment (exosomes) of cells.1,2 They are produced 
by platelets upon activation and have been associ-
ated with both noninfectious chronic inflammatory 
diseases3 (eg, atherosclerosis, diabetes, coronary 
artery disease, and hypertension) and infectious dis-
eases4,5 (eg, influenza and coronavirus disease 2019 
[COVID-19]). Similar to EVs from other cell types, 
platelet-derived EVs (pEVs) transport diverse cargo 
(eg, RNA, lipids, and proteins), which can be trans-
ferred to cellular recipients. Thus, because pEVs can 
reach organs and tissues inaccessible to platelets, 
they may contribute to more distant cellular commu-
nication. In this review, we present historical findings 
related to pEVs and hemostasis and discuss how 
more recent findings point to a role for pEVs in inter-
cellular communication under both physiological and 
pathological conditions.

Please see www.ahajournals.org/atvb/atvb-focus for all 
articles published in this series.
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HISTORICAL FINDINGS ON THE ROLE OF 
PLATELET EVs
The earliest observation documenting activity that 
was later attributed to pEVs was by Chargaff and 
West,6 who described coagulant lipoproteins with a 
high particle weight that were separated from plate-
lets by differential centrifugation. Later, a platelet-like 
activity in serum was identified by a thrombin-gener-
ation test7 but was not yet associated with pEVs. The 
first observation of small particles fitting the current 
description of EVs was by Peter Wolf,8 who also noted 
platelet-derived particles that could be separated from 
platelets by differential centrifugation.8 These small 
particles were termed platelet dust and displayed a 
procoagulant function that could shorten clotting time 
and promote thrombin generation.8 Shortly thereafter, 
electron microscopic analyses9 of α-granule release 
from platelets also imaged small vesicles being released. 
This release of vesicles, referred to as microparticles, 
from the platelet plasma membrane implicates the extru-
sion of platelet cytomembrane structures.10 A later study 
using electron microscopy11 provided a more detailed 
description of the 2 types of pEVs: small vesicles with 
a diameter of ≈80 to 200 nm and larger vesicles with 
a diameter of 400 to 600 nm, which retained pro-
coagulant potential mediated by factor V-like activ-
ity and tissue factor. While pEVs had primarily been 
associated with procoagulant activity, another study 
offered the first evidence that pEVs may exert both 
pro- and anticoagulatory effects. This study showed 
that pEVs could support activation of prothrombin but 
also inactivation of factor Va12 through binding of pro-
tein S to the coagulation inhibitor protein C in some 
pEV preparations.13 These data provided an early 

indication that the function of pEVs can be modified 
post-release.

The procoagulant effects of pEVs have been largely 
linked to the surface exposure of negatively charged 
phospholipids (eg, phosphatidylserine).14 However, the 
coagulant potential of pEVs may depend on their trig-
ger of release from platelets.15 More specifically, highly 
procoagulant pEVs are produced when platelets are 
activated by a combination of collagen and thrombin, 
complement C5b-9, or the nonphysiological trigger cal-
cium ionophore.15,16 However, the procoagulant activity 
is lower if platelets are activated by thrombin, ADP, or 
epinephrine.15,16 After in vitro platelet stimulation, with the 
exception of C5b-9–induced pEVs, only 25% to 30% of 
total procoagulant activity is associated with pEVs inde-
pendent of platelets.15,16 This suggests that the proco-
agulant properties of pEVs may be eclipsed by platelets 
and, therefore, may not be their sole function.

Detailed electron microscopic analysis of activated 
platelets17 connected the data from various publica-
tions and described the release of 2 different EV 
populations (termed microvesicles and exosomes) trig-
gered by platelet activation with the PAR (proteinase-
activated receptor) agonist, TRAP (thrombin receptor 
agonist peptide SFLLRN), or α-thrombin. Microvesicles 
were defined as vesicles 100 to 1000 nm in diameter, 
phosphatidylserine-exposing (annexin-V binding), which 
express αIIb-β3 and β1, GP1bα (glycoprotein 1bα), and 
P-selectin, proteins that are present on (activated) plate-
lets.17 Exosomes were defined as 40 to 100 nm in diam-
eter, similar to internal vesicles in multivesicular bodies 
and α-granules, expose CD63 (cluster of differentiation 
63), and are undetectable by flow cytometry.17 Factor X 
and prothrombin were able to bind to microvesicles but 
not exosomes. Thus, it was suggested that the coagu-
lant properties of pEVs are associated with microvesi-
cles but not exosomes.17 Some procoagulant activity of 

Nonstandard Abbreviations and Acronyms

COVID-19	 coronavirus disease 2019
CRP	 C-reactive protein
EV	 extracellular vesicle
GP1bα	 glycoprotein 1bα
HDL	 high-density lipoprotein
IL	 interleukin
LDL	 low-density lipoprotein
MMP	 matrix metalloproteinase
PAD4	 peptidylarginine deiminase 4
PAR	 proteinase-activated receptor
pEV	 platelet-derived extracellular vesicle
sPLA2-IIA	 secreted phospholipase A2 IIA
TRAP	� thrombin receptor agonist peptide 

SFLLRN

Highlights

•	 Upon activation by a variety of agonists, platelets 
readily generate extracellular vesicles, which were 
initially identified as procoagulant particles.

•	 As both platelets and their extracellular vesicles are 
abundant in blood, the role of platelet extracellular 
vesicles in hemostasis may be redundant.

•	 Recent findings have challenged the signifi-
cance of platelet-derived extracellular vesicles in 
hemostasis.

•	 Platelet extracellular vesicle cargo and function is 
incredibly diverse and can affect many different 
cell types.

•	 In contrast to platelets, platelet extracellular vesicles 
can cross tissue barriers, extending their abilities 
beyond the blood.
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circulating pEVs was subsequently associated with tis-
sue factor.18 Although platelets have not been conclu-
sively demonstrated to express tissue factor,19 studies 
suggest that they may acquire it from tissue factor–
bearing EVs (from other cells) through fusion in a 
P-selectin glycoprotein ligand-1–dependent manner.20

DEFINITIONS OF EVs AND GENERAL 
CONSIDERATIONS IN THE 
INTERPRETATION OF PIONEERING 
STUDIES
Historically, the 2 main types of EVs that have been iden-
tified have most often been referred to as microvesicles/
microparticles and exosomes. However, the terminol-
ogy has frequently been used in different contexts, and 
the isolation protocols were not standardized leading to 
confusion, misinterpretation, and reproducibility issues. 
Unless experimental conditions permit capturing vesicle 
release as it occurs to discern whether they originate 
from plasma membrane budding or intracellular com-
partments, the current consensus21 is that the umbrella 
term extracellular vesicles should be used. The term EV 
encompasses all different types of vesicles, including 
microvesicles/microparticles and exosomes. Moreover, a 
clear description of the preparation methodology and a 
detailed characterization of EVs is required when they 
are reported.21 In particular, with regard to pEV isolation, 
attention should be paid to proper separation of pEVs 
and platelets22 and their distinction from lipoproteins 
(chylomicrons, LDL [low-density lipoprotein], and HDL 
[high-density lipoprotein]).23 The exact concentrations of 
EVs (and pEVs) in healthy plasma is an ongoing mat-
ter of debate, and concentrations ranging from 200 up 
to 109 EVs/µL have been reported.24 These discrepan-
cies can likely be attributed to low sensitivity of detection 
methods or codetection of contaminants.23,24 A con-
servative estimate of pEVs by cryo-electronmicroscopy 
determined their concentration to be close to 11 500/µL 
in healthy plasma.24 Considering these issues, it is pru-
dent to include EV measurements from healthy control 
plasma in side-by-side comparisons with EVs obtained 
from a study group of interest to enable a direct com-
parison of EV quantities. Likewise, a meta-analysis of EV 
concentrations across different studies may have limited 
usefulness if it cannot guarantee comparable isolation 
and detection protocols.

Despite their absolute quantities still being investi-
gated, it is accepted that platelets and megakaryocytes 
are the primary source of EVs in the blood circulation.24–26 
While pEVs are released from platelets upon stimula-
tion, megakaryocyte EVs are constiutively released from 
megakaryocytes in the bone marrow into the blood. As 
such, megakaryocyte EVs dominate in healthy individuals 
while pEVs increase in conditions with enhanced platelet 

activation. While both are positive for CD41, pEVs gen-
erally express the platelet activation markers P-selectin 
(CD62P) and phosphatidylserine, while megakaryocyte 
EVs do not.25,27 However, both pEV content and surface 
marker expression is dependent on the platelet agonist, 
and the resulting pEV populations are highly heterog-
enous.27,28 pEV numbers significantly increase in con-
ditions with chronic inflammation and ongoing platelet 
activation, such as cardiovascular disease, cancer, and 
autoimmune diseases like rheumatoid arthritis and sys-
temic lupus erythematosus.29–33 In addition to changes 
in pEV quantity, there are changes in pEV content in 
settings such as cardiovascular disease,34 infections,35 
autoimmune diseases (multiple sclerosis,36 rheumatoid 
arthritis,37 and systemic lupus erythematosus38,39), and 
cancer.40 As pEVs contain a subset of cargo packaged 
from platelets, this differential cargo could result from 
(1) plasma components directly endocytosed by plate-
lets, (2) platelet changes at the level of their mother cells, 
megakaryocytes, or likely (3) a combination of these two 
mechanisms.

IS PROCOAGULANT ACTIVITY THE MAIN 
FUNCTION OF PLATELET EVs?
With these diverse roles of pEVs in mind, it is prudent 
to revisit the assertion that their main function relates 
to propagation and support of procoagulant activity. A 
recent study by Berckmans et al22 highlighted concerns 
regarding the interpretation of their earlier EV studies. 
The authors reevaluated their previous findings41 on the 
coagulant properties of EVs in blood from healthy volun-
teers. In comparison to their earlier study,41 they report up 
to 190-fold to 264-fold higher concentrations of EVs in 
blood.22 Surprisingly, these EVs display fibrinolytic activity 
in a plasmin generation assay,22 rather than a procoagu-
lant function as previously reported in a thrombin-gen-
eration assay.41 The authors argue that the collection 
method used in the earlier study was suboptimal com-
pared with more recent protocols, as the earlier separa-
tion of EVs from platelets was performed by a single-step 
centrifugation protocol, which might have led to platelet 
contamination.22 In addition, platelets may have been 
activated when they were collected in glass tubes in past 
studies.22 In contrast, a different study confirmed the 
presence of procoagulant EVs in blood from healthy vol-
unteers, this time using a more sensitive assay.42 As out-
lined in the first section, both procoagulant6,8,11,12,14–18,20 
and anticoagulant12,13,15,16,43 properties are attributed to 
pEVs; these differences may be explained by the exis-
tence of different pEV subsets.17

The study of pEVs in human disease also provides 
information regarding their physiological role in coagula-
tion. In Scott syndrome, platelets lack the ability to expose 
phosphatidylserine on their surface during activation, and 
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the number of circulating pEVs is drastically reduced.44 
Although the reduced number of pEVs could account for 
the increased bleeding risk in these patients, phosphati-
dylserine exposure is deficient on platelets themselves 
and on other cells, which makes it difficult to determine 
the relative contribution of pEVs versus platelets to the 
observed bleeding phenotype. Moreover, these patients 
present with only a mild bleeding phenotype, indicating 
that pEVs may not be critically required for hemostasis.

Furthermore, Stormorken syndrome, also called 
inverse Scott syndrome,45 is associated with either a 
gain-of-function mutation in the STIM1 gene46 or a loss 
of function in the calcium release-activated calcium 
channel protein 1.47 In Stormorken syndrome,48 plate-
lets appear to be hyperactivated and expose increased 
levels of phosphatidylserine on their surface. In addition, 
the concentration of circulating pEVs is higher in this 
disease. Of note is that the phenotype presents with a 
mild bleeding defect. Together, these in vivo and in vitro 
observations suggest that the role of pEVs in hemostasis 
may be minor, even though specific pro- and anticoagu-
lant functions have been indirectly attributed to them.

DO PLATELET EVs HAVE THERAPEUTIC 
POTENTIAL?
EVs from various cell types are currently being explored 
as therapeutic tools.49 pEVs may have therapeutic 
potential, as they can support coagulation and angio-
genesis in different animal models of bleeding and 
trauma.50–53 However, the effects of pEVs vary depend-
ing on the trigger of pEV generation; pEVs derived from 
resting platelets50,51 versus thrombin-activated plate-
lets51 demonstrate mild or strong hemostatic properties 
(indicated by formation of smaller or larger aggregates), 
respectively. Moreover, exosomal pEVs have been ben-
eficial in treatment of chronic injuries and trauma.52,53 
These studies suggest that careful production and 
characterization of pEVs is necessary before determin-
ing their utility in any in vivo applications. However, there 
is significant interest in development of pEVs for use in 
conflict or war zones where high rates of trauma and 
bleeding injuries are common.54,55 Since liquid platelet-
rich plasma preparations only have a short half-life (≈5 
days) and are required to be kept at temperatures of 
20 to 24 °C, frozen pEV preparations are an attractive 
alternative.54,55 However, given the current knowledge 
of the diverse and seemingly contradictory functions 
of pEVs, reaching their full therapeutic potential will 
depend on clear separation of pEV subtypes and care-
ful development of best-practice protocols for pEV gen-
eration and isolation.

PLATELET EVs AS INFLAMMATORY 
AGENTS
Aside from their potential roles in coagulation, pEVs have 
significant inflammatory properties. For example, plate-
lets activated by staphylococcal superantigen-like protein 
5 release pEVs capable of inducing leukocyte aggrega-
tion.56 Moreover, pEVs carry molecules such as cytokines 
(eg, IL [interleukin]-1β57,58), lipid mediators,59 and damage-
associated molecular patterns (eg, HMGB1 [high-mobil-
ity group box 1]60), pointing to their role in the transfer 
of inflammatory signals. In addition, pEVs can modify the 
pentameric CRP (C-reactive protein) into its inflammatory 
form.61 This change implicates the binding of pentameric 
CRP to phosphocholine on pEVs.61 Conversely, it was 
found that in an inflammatory milieu, PAD4 (peptidylar-
ginine deiminase 4) could citrullinate proteins on the sur-
face of pEVs and thereby promote their antigenicity.62

However, pEVs are not always proinflammatory and 
may also have immune regulatory potential. For instance, 
pEVs can provide 12-lipoxygenase to mast cells, which 
enhances the production of lipoxin A4—a stimulator of 
the resolution of inflammation.63 Furthermore, pEVs shed 
by stored human platelets can polarize macrophages to 
an anti-inflammatory state.64 This effect may result from 
the depletion of complement proteins (C1q, CFH [com-
plement factor h], and C3d) by pEVs in plasma.64 Plate-
let EVs also regulate adaptive immunity; they can induce 
anti-inflammatory signaling in plasmacytoid dendritic 
cells65 and inhibit differentiation of regulatory T cells into 
proinflammatory cells through a mechanism involving 
P-selectin.66

Thus, similar to observations made in coagulation 
studies, pEVs appear to have both pro- and anti-inflam-
matory roles. We again suggest that these different roles 
might be played by pEV subtypes that are generated 
after platelet stimulation with different agonists.

PLATELET EVs AS A MEANS TO 
EXCHANGE PLATELET CARGO WITH 
OTHER CELLS
EVs are a direct way to foster cell-to-cell communica-
tion to nonadjacent cells, and pEVs are no exception. 
Transcription factors,67 mRNA, and noncoding RNA (eg, 
microRNA) are packaged into and transported by pEVs.68 
Several studies have shown that pEV-derived miRNAs 
are incorporated into target cells and can signal with 
varying effects.69 For instance, upon infiltration of solid 
tumor tissue in mice and humans, pEVs can promote 
apoptosis of tumor cells by transfer of miR-24.70 Fur-
thermore, pEVs transfer miR-223 in complex with argo-
naute 2 to endothelial cells71 and miR-223 and miR-126 
to breast cancer cells,72 which directly modify respective 
recipient cell functions. However, it should be noted that 
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significant amounts of circulating RNAs are also associ-
ated with small, nonvesicular particles,73 which are likely 
to be lipoproteins,74 suggesting that pEVs are not the 
sole source of extracellular RNA molecules in blood.

Mitochondria can be released from platelets and other 
cells as free mitochondria or as cargo in EVs.75–78 Circu-
lating mitochondria are generally considered a source of 
potential damage-associated molecular patterns,79 pro-
moting inflammation once outside the cell, which may 
be pathogenic in situations like trauma-induced injury.80 
Moreover, mitochondria released by platelets indirectly 
contribute to inflammation via the liberation of inflamma-
tory mediators upon sPLA2-IIA (secreted phospholipase 
A2 IIA)–catalyzed hydrolysis.78 In addition, mitochondria in 
the circulation may serve as a source of autoantigens as 
demonstrated in systemic lupus erythematosus.81 How-
ever, the role of circulating mitochondria is complicated 
by the fact that mitochondria released in association with 
EVs have been reported to be proinflammatory,77 non-
inflammatory, and potentially cytoprotective.75,76 Indeed, 
while extracellular mitochondria released from endo-
toxin-stimulated monocytic cells can activate endothe-
lial cells, mitochondria released from resting monocytes 
were unable to induce inflammatory effects. These dif-
ferences may be due to the activation state of the cel-
lular source of mitochondria. As mitochondria in pEVs are 
functional,78 the transportation of mitochondria by pEVs 
could play a role in reprogramming the metabolism of 
the cellular recipient. This process is already recognized 
for mesenchymal stem cells76 and bone marrow–derived 
stromal cells,75 which are capable of transfering mito-
chondria embedded in EVs to other cells, thereby improv-
ing the bioenergetics of the recipient.75,76

In summary, although pEVs are produced by an anu-
cleated cell, they bear components capable of regulating 
the transcription, RNA stability, translation, and metabo-
lism of their target cells.

CHANGE OF LOCATION—LOOKING 
BEYOND THE BLOOD
Taken together, pEVs can perform a wide range of func-
tions in the circulation, including (anti)coagulant or (anti)
inflammatory effects, and are involved in intercellular 
communication between blood cells. However, these 
roles of pEVs are shared, or overlap, with platelet func-
tion, with the importance of platelets in coagulation being 
undoubtedly superior. Combined with the challenges of 
physically separating pEVs from platelets, it may be more 
relevant and meaningful to examine pEVs in spatially dif-
ferent contexts than platelets.

PLATELET EVs IN THE SYNOVIAL FLUID
Platelet EVs have been identified in synovial fluid58,82 
and are elevated in rheumatoid arthritis.82 Typically, 
platelets are rarely found in, or are absent from, synovial 
fluid. Under inflammatory conditions, pEVs may cross 
over into the synovial fluid where they become the tar-
get of autoantibodies against citrullinated proteins.62,83 
These pEVs are proinflammatory, as they induce cyto-
kine responses in synovial fibroblasts mediated by IL-1, 
thereby potentially contributing to the disease.58 More-
over, pEVs may serve as a substrate for sPLA2-IIA, 
which is overexpressed in synovial fluid.67 Neovascu-
larization is thought to be detrimental in arthritis,84 and 
pEVs might contribute to neovascularization both indi-
rectly by promoting inflammation58,62,83 or directly by sup-
porting angiogenesis.85,86 It has been shown in vitro that 
pEVs can promote endothelial cell proliferation, survival, 
migration, and tube formation.85 In vivo angiogenesis 
and postischemic revascularization are also promoted 
by pEVs.86 A potential mode of proangiogenic action is 
the induction of MMPs (matrix metalloproteinases) in 
the target endothelial cells. This is supported by data 
showing that pEVs can mediate increased expression 
of MMP-2 and MMP-9 mRNA and protein in human 
umbilical vein endothelial cells, despite the absence 
of these enzymes in pEVs.87 Moreover, pEVs can sup-
port early outgrowth of endothelial cells after vascular 
injury88 and promote proliferation of smooth muscle 
cells89 and hematopoietic cells.90 As such, these roles of 
pEVs may enhance tissue remodeling in chronic inflam-
matory joint disease or promote healing following tissue 
injury. Increased vascular permeability in inflamed joints 
may additionally support the crossover of pEVs into the 
synovial fluid. Nonetheless, it cannot be excluded that 
platelets may release pEVs locally through activation by 
the subendothelial matrix if they are transported by leu-
kocytes or could undergo migration.91,92

PLATELET EVs IN THE LYMPH
Interstitial fluid—rich in leukocytes, proteins, and 
EVs93—is drained through the lymphatic system away 
from tissue and into the blood. Platelet EVs circulate in 
lymph in the absence of inflammation, suggesting that 
this fluid, absent of any platelets, is used by pEVs to 
reach tissue locations inaccessible to platelets them-
selves.93,94 While one animal study found that plate-
lets are essentially absent within solid tumors, pEVs 
could reach tumor cells and reprogram them with their 
microRNA content,70 potentially due to their circulation 
through the lymphatics. Moreover, inflammation can 
lead to increased access of pEVs to lymph, such as in 
atherosclerosis and rheumatoid arthritis.93,94 In rheuma-
toid arthritis, pEV egress into lymph involves serotonin-
mediated vascular permeability, as pEVs in lymph were 
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reduced in mice lacking peripheral serotonin.94 In con-
trast to blood pEVs, the pEVs that accumulate in lymph 
in autoimmune arthritis do not contribute to coagula-
tion,94 suggesting that pEVs in this fluid may play a 
nonredundant role with platelets. As the lymphatic sys-
tem connects lymphoid organs, the presence of pEVs 
in lymph might suggest that pEVs participate in key 
immune activities. Furthermore, platelets contribute to 
lymphatic vessel development by CLEC-2–podoplanin 
interactions.95 Specifically in blood-lymphatic vessel 
separation,96 platelets become activated on contact with 
lymphatic endothelium in a CLEC-2–dependent man-
ner, resulting in the formation of a lymphovenous clot 
preventing blood from entering lymph.96 Intriguingly, the 
presence of CLEC-2 expressing pEVs in lymph94 offers 
the possibility of pEV-mediated effects on lymphatic 
development independently of their parental platelets. 
Of note, phosphatidylserine expression and comparable 
levels of miR-451 and miR-223 could be detected in 
lymph pEVs compared with blood pEVs. However, the 
absence of mitochondria in lymph pEVs may represent 
a feature distinguishing these from blood pEVs.

PLATELET EVs IN THE BONE MARROW
In many inflammatory conditions, platelet counts rise, 
resulting in thrombocytosis. What initiates this upregula-
tion is not well understood and has largely been attrib-
uted to an inflammatory response and increased cytokine 
release. However, EVs released by platelets during 
states of ongoing inflammation can leave the circula-
tion and penetrate into the bone marrow space.27 Once 
there, pEVs rapidly bind to bone marrow cells, including 
megakaryocytes and their progenitors (CD41+ cells). Of 
note, ex vivo treatment of bone marrow from mice lack-
ing the thrombopoietin  receptor (cMpl knockout) with 
wild-type pEVs can restore megakaryocyte differentia-
tion, showing pEV-dependent functional reprogramming. 
These data show that pEVs are a unique delivery system 
that can penetrate the bone marrow and deliver concen-
trated, targeted plasma cargo that alters megakaryocyte 
function and phenotype. In this way, pEVs may act as 
sentinels and messengers, communicating changes hap-
pening in the plasma milieu directly back to cells in the 
bone marrow. Further in vivo studies examining the role 
that pEVs play in altering bone marrow cell populations in 
varying inflammatory states will help elucidate their func-
tional impact on disease pathology.

COULD PLATELET EVs MIGRATE INTO 
OTHER TISSUES OR BODY FLUIDS?
Various types of EVs in different tissues and body flu-
ids have been discussed elsewehere,97 including but not 

limited to blood, urine, saliva, breast milk, and cerebro-
spinal and synovial fluid. Of yet, it is not known whether 
pEVs are found in tissues or body fluids other than the 
blood, synovial fluid, lymph, and bone marrow. However, 
the potential of EVs to be transferred across biological 
barriers has also been observed for the blood-brain bar-
rier.98–100 Interestingly, the transfer was bidirectional: (1) 
transfer of glioma-derived EVs or procoagulant mito-
chondria containing EVs across the blood-brain barrier 
to the blood100,101 and (2) intravenously injected EVs 
from blood across the BBB to neuronal cells.102 It is 
unknown whether this also applies to pEVs. Considering 
that several physical and chemical properties are shared 
between EVs of different origins, it is possible that pEVs 
may be transferred across tissue barriers such as the 
BBB, especially in inflammatory conditions.

HOW DO PLATELET EVs CROSS INTACT 
BARRIERS?
Platelets themselves show significant but limited migra-
tory capacities.92 They not only adhere to the inflamed 
vessel wall but also migrate against the blood flow and 
probe the surrounding area for microbes.92 Whether 
this migratory ability enables platelets to move across 
the endothelial barrier and leave the circulation has 
not been shown. However, platelet-leukocyte aggre-
gates have been reported in various inflammatory and 
hematologic pathologies.103–105 Interactions of platelets 
and leukocytes can be mediated by αIIbβ3,106 CD62P 
(P-selectin),107,108 and glycoprotein Ib.109 These proteins 
can also be expressed on pEVs17 and may be involved 

Figure. Platelet-derived extracellular vesicles can leave 
circulation and penetrate privileged organs such as the 
synovium, lymph, and bone marrow.
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in mediating pEV-leukocyte interactions.110–112 While 
it is difficult to distinguish platelet-leukocyte and pEV-
leukocyte aggregates in vivo,113 such associations have 
the potential to offer platelets and pEVs a piggyback 
ride across the vascular barrier. In addition, studies have 
also found that pEVs are enhanced in the extravascular 
space under conditions with enhanced vascular perme-
ability.91,94 This leads to the hypothesis that the small size 
of pEVs may allow them to migrate into certain organs 
under these conditions. However, there remains much 
work to be done on the mechanisms of how pEVs can 
access these priviledged spaces.

SUMMARY
Platelet EVs were historically identified as procoagulant 
particles released by activated platelets. Over time, it 
has become clear that their roles are more diverse. In 
researching both their roles in coagulation and beyond, 
one of the most important challenges is distinguishing 
the functions of pEVs from those mediated by their plate-
lets of origin. The ability to do this will likely depend on 
careful isolation and characterization of the different sub-
types of pEVs created after platelet stimulation with vari-
ous agonists. Moreover, accumulating evidence points to 
the importance of pEVs in intercellular communication 
not only within circulating cells but also beyond to other 
organs (Figure). Given that pEVs may permeate tissues 
that are inaccessible to platelets, such as joints, lymph, 
and bone marrow, the dissemination of platelet compo-
nents into tissues and organs beyond the blood may be 
among their significant functions. Taken together, these 
observations suggest that future studies may reveal pEV 
abilities that extend beyond coagulation and inflamma-
tion and into tissue barriers impenetrable to platelets.
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